Solving Problems Submitted to MAA Journals (Part 5c)

The following problem appeared in Volume 96, Issue 3 (2023) of Mathematics Magazine.

Evaluate the following sums in closed form:

f(x) = \displaystyle \sum_{n=0}^\infty \left( \cos x - 1 + \frac{x^2}{2!} - \frac{x^4}{4!} \dots + (-1)^{n-1} \frac{x^{2n}}{(2n)!} \right)

and

g(x) = \displaystyle \sum_{n=0}^\infty \left( \sin x - x + \frac{x^3}{3!} - \frac{x^5}{5!} \dots + (-1)^{n-1} \frac{x^{2n+1}}{(2n+1)!} \right).

In the previous post, we showed that f(x) = - \frac{1}{2} x \sin x by writing the series as a double sum and then reversing the order of summation. We proceed with very similar logic to evaluate g(x). Since

\sin x = \displaystyle \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}

is the Taylor series expansion of \sin x, we may write g(x) as

g(x) = \displaystyle \sum_{n=0}^\infty \left( \sum_{k=0}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!} - \sum_{k=0}^n (-1)^k \frac{x^{2k+1}}{(2k+1)!} \right)

= \displaystyle \sum_{n=0}^\infty \sum_{k=n+1}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}

As before, we employ one of my favorite techniques from the bag of tricks: reversing the order of summation. Also as before, the inner sum is inner sum is independent of n, and so the inner sum is simply equal to the summand times the number of terms. We see that

g(x) = \displaystyle \sum_{k=1}^\infty \sum_{n=0}^{k-1} (-1)^k \frac{x^{2k+1}}{(2k+1)!}

= \displaystyle \sum_{k=1}^\infty (-1)^k \cdot k \frac{x^{2k+1}}{(2k+1)!}

= \displaystyle \frac{1}{2} \sum_{k=1}^\infty (-1)^k \cdot 2k \frac{x^{2k+1}}{(2k+1)!}.

At this point, the solution for g(x) diverges from the previous solution for f(x). I want to cancel the factor of 2k in the summand; however, the denominator is

(2k+1)! = (2k+1)(2k)!,

and 2k doesn’t cancel cleanly with (2k+1). Hypothetically, I could cancel as follows:

\displaystyle \frac{2k}{(2k+1)!} = \frac{2k}{(2k+1)(2k)(2k-1)!} = \frac{1}{(2k+1)(2k-1)!},

but that introduces an extra (2k+1) in the denominator that I’d rather avoid.

So, instead, I’ll write 2k as (2k+1)-1 and then distribute and split into two different sums:

g(x) = \displaystyle \frac{1}{2} \sum_{k=1}^\infty (-1)^k \cdot 2k \frac{x^{2k+1}}{(2k+1)!}

= \displaystyle \frac{1}{2} \sum_{k=1}^\infty (-1)^k (2k+1-1) \frac{x^{2k+1}}{(2k+1)!}

= \displaystyle \frac{1}{2} \sum_{k=1}^\infty \left[ (-1)^k (2k+1) \frac{x^{2k+1}}{(2k+1)!} - (-1)^k \cdot 1 \frac{x^{2k+1}}{(2k+1)!} \right]

= \displaystyle \frac{1}{2} \sum_{k=1}^\infty (-1)^k (2k+1) \frac{x^{2k+1}}{(2k+1)!} - \frac{1}{2} \sum_{k=1}^\infty (-1)^k  \frac{x^{2k+1}}{(2k+1)!}

= \displaystyle \frac{1}{2} \sum_{k=1}^\infty (-1)^k (2k+1) \frac{x^{2k+1}}{(2k+1)(2k)!} - \frac{1}{2} \sum_{k=1}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}

= \displaystyle \frac{1}{2} \sum_{k=1}^\infty (-1)^k \frac{x^{2k+1}}{(2k)!} - \frac{1}{2} \sum_{k=1}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}.

At this point, I factored out a power of x from the first sum. In this way, the two sums are the Taylor series expansions of \cos x and \sin x:

g(x) = \displaystyle \frac{x}{2} \sum_{k=1}^\infty (-1)^k \cdot \frac{x^{2k}}{(2k)!} - \frac{1}{2} \sum_{k=1}^\infty (-1)^k \frac{x^{2k+1}}{(2k+1)!}

= \displaystyle \frac{x}{2} \cos x - \frac{1}{2} \sin x

= \displaystyle \frac{x \cos x - \sin x}{2}.

This was sufficiently complicated that I was unable to guess this solution by experimenting with Mathematica; nevertheless, Mathematica can give graphical confirmation of the solution since the graphs of the two expressions overlap perfectly.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.