Today, the Texas Section of the Mathematical Association of America is holding its annual conference. Like many other professional conferences these days, this conference will be held virtually, and so my contribution to the conference is saved on YouTube and is available to the public.

Here’s the abstract of my talk: “At a saddle point (like the middle of a Pringles potato chip), the directions of maximum upward concavity and maximum downward concavity are perpendicular. The usual proof requires a fair amount of linear algebra: eigenvectors of different eigenvalues of a real symmetric matrix, like the Hessian, must be orthogonal. For this reason, the orthogonality of these two directions is not often stated in calculus textbooks, let alone proven, when the Second Partial Derivative Test for identifying local extrema and saddle points is discussed. In this talk, we present an elementary proof of the orthogonality of these two directions that requires only ideas from Calculus III and trigonometry. Not surprisingly, this proof can be connected to the usual proof from linear algebra.”