Engaging students: Defining the term segment bisector

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Caroline Wick. Her topic, from Geometry: defining the term segment bisector.

green line

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

A segment bisector is a point, segment, line, or plane that divides a line segment into two equal parts, according to the math dictionary “intermath” (A1). This geometric term has been used throughout history to create art, even before the term was eloquently defined. The people of ancient Greece would use all sorts of geometric ideas to build their vast architectural structures and sculptures, and almost all of these structures would require segment bisectors. According to the Metropolitan Museum of Art page on Greek Architecture, “the vertical structure of [their] temple conformed to an order, a fixed arrangement of forms unified by principles of symmetry and harmony” (A2). The Ancient Greeks prided themselves on their beautiful structures that were pleasing to the eyes because of their symmetry and balance.

Take this picture above, for instance. The columns on the right are perfectly symmetrical to the top beam, and the middle column perfectly divides the top beam. It would be considered a Segment bisector.

Other examples of segment bisectors in high art can be seen in renowned artists work like Picasso who used geometry to paint/express the world in a way that one might not normally see, and other painters have used this geometrical interpretation in their works as well.

green line

A. Applications: How could you as a teacher create an activity or project that involves your topic?

Segment bisectors could be used in a number of projects or activities. One activity could be showing the use of segment bisectors in origami, or the art of paper folding. Origami requires multiple strategic folds of paper that must be perfect if the shape is to come to fruition. One often has to fold the paper in half perfectly many times, which is the definition of a segment bisector. Students could learn how to use geometric concepts in a concrete and fun way that is applicable in the real world.

The picture above shows just how much segment bisectors are used in the art of paper folding.

Another project could be using the information above on ancient Greek architecture to create their own little architectural temples or structures. The students would use basic materials found around the house, and their knowledge of geometric definitions to create these structures. Not only would this project apply to geometry, but it would also help students see how geometry plays a role in architecture; another real-world application of school knowledge.

 

green line

How can technology be used to effectively engage students with this topic?

Segment bisectors do not really sound like the most exciting topic for students to cover. Sure, they can be used in a lot of different applications, but when a student hears that they will be working with the definition of a segment bisector, they likely will not get terribly enthusiastic. However, if students learn these ancient concepts in the context of new technology, it might stick in their brains as a more interesting topic. Geogebra is a website that allows you to construct geometrical shapes and objects as if you were using a ruler and compass. Students could very easily spend hours on the site just finding different ways to construct a geometric shape. They could use the site to create and define multiple geometric concepts, including segment bisectors, so that they discover the words’ meanings for themselves.

The picture above was taken from a youtube video that shows you how to construct perpendicular segment bisectors using a ruler and compass. And though it may seem like it a more advanced subject, students will be able to see the reasoning behind the definition, and might be able to use this website and knowledge for later geometric use.

References:

http://intermath.coe.uga.edu/dictnary/descript.asp?termID=323
https://www.metmuseum.org/toah/hd/grarc/hd_grarc.htm
http://www.crystalinks.com/greekarchitecture.html

https://www.youtube.com/watch?v=cZTEGgsy9W0&ab_channel=Ri chardPieper

Engaging students: Perimeters of polygons

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Brittnee Lein. Her topic, from Geometry: perimeters of polygons.

green line

How have different cultures throughout time used this topic in their society?

Finding the perimeter of a polygon has been a necessity since the implementation of architecture and engineering in society. Every advanced society has used this topic to their benefit. For example, if a person wanted to build a fence around their rectangular garden, but wanted to use the least amount of building materials possible, they could find the perimeter around the garden and then calculate how many planks of wood they would need to use before buying that wood. This is a much more effective method than buying the wood and then finding out how much one would need to use.

 

green line

2. What interesting (i.e., uncontrived) word problems using this topic can your students do now?

A few interesting word problems I found online involve real world applications of decorating. Both of the problems I found are off of this website: http://www.bbc.co.uk/skillswise/worksheet/ma31peri-e3-w-perimeter-problems

Problem 1 is good for enforcing student understanding because it challenges them to think more abstractly than if the problem were merely stated as “what is the perimeter of the cake?”. This problem tests student understanding of both the meaning of a square and the meaning of perimeter.

Problem 5 is beneficial to students because it includes both a closed and an open question. The closed question allows students to practice what they have learned about finding the perimeter of a polygon and the open-ended question is worded in a way that challenges the student’s conceptual understanding. The student must not only compute the perimeter but also must explain his/her thinking. This problem also forces students to visualize the problem in their head.

green line

3. How could you as a teacher create an activity or project that involves your topic?

An engaging activity that a teacher could create to reinforce the topic of finding the perimeter of a polygon is a game where students set out to stop a criminal from entering an a given area/robbing a bank. The students would have to find the perimeter of a building from a simple blueprint mapping the building’s structure (in this case it would just be the outline of the shape of the building with given dimensions). The student would be informed of how much area each officer can cover and they would then be expected to “secure the perimeter” by allotting a certain amount of police officers to the building and placing them along the perimeter (denoted by a given symbol). To ramp up the difficulty of the game, you could set a time limit for each building and have students compete against the clock to stop the robber and you could also increase the variety of officers in the game where each type has a specialty and can cover a different amount of area.

The idea for this activity is found on the website: https://www.teacherspayteachers.com/Product/Secure-the-Perimeter-Cover-the-Area-Hands-on-police-trainee-activity-2770696

 

References

“Secure the Perimeter! Cover the Area! Hands-on ‘Police Trainee’ Activity.” Teachers Pay Teachers, http://www.teacherspayteachers.com/Product/Secure-the-Perimeter-Cover-the-Area-Hands-on-police-trainee-activity-2770696.

Perimeter Problems.” BBC News, BBC, http://www.bbc.co.uk/skillswise/worksheet/ma31peri-e3-w-perimeter-problems.

 

Engaging students: Finding the volume and surface area of spheres

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Austin DeLoach. His topic, from Geometry: finding the volume and surface area of spheres..

green lineWhat interesting word problems using this topic can your students do now?

I found an interesting word problem that has to do with finding the size and density of Pluto using satellite images and data at https://spacemath.gsfc.nasa.gov/Geometry/6Page143.pdf that would be a good way for students to practice finding the volume of a sphere among other things. This problem could not be used at the very beginning of the section, but it is definitely interesting and could be very engaging for some students. There are multiple parts to the problem, but the third part has students calculate the volume of Pluto using the scale of measurement that they discovered in an earlier part. Students would then use their calculated volume to determine the density of the planet and compare it to other common things by using the given mass of the planet. Not only is this practice for the students to be able to calculate volume of spheres, but it helps them by showing further applications and how their calculated volume can be used to make more scientific discoveries. Problems like this are very good for students to see so that they can recognize real-world application for what they are learning in school, even if it is simplified for the sake of the class.

green line

How could you as a teacher create an activity or project that involves your topic?

One idea that I think is interesting and engaging for students is taking an orange, measuring the diameter, then seeing how many circles of the same diameter the removed orange peel can fit in. There is a short demonstration video at https://www.youtube.com/watch?v=FB-acn7d0zU to see what I mean. This is a good activity because it is very hands-on for students to be actively engaged, and it also helps students recognize that mathematical formulas are not just thrown together, but there is reasoning behind all of them. This will also help the students remember the formula for the surface area of a sphere, as they will be able to think back to this activity and remember the time that they discovered the formula on their own. There is potential to be messy with this activity, but because it is such a memorable activity and will genuinely engage the students and let their curiosity about mathematics come to life, it is worth it if you can set aside the time for clean-up afterwards.

green lineHow has this topic appeared in pop culture?

A big place for volume and surface area of spheres to come up in pop culture is in sports. One recent situation can be seen at http://www.espn.com/espn/wire/_/section/ncw/id/18605942 where the Charleston women’s basketball team had to forfeit two victories because their basketballs for those games were not regulation size. The team accidentally used NCAA men’s basketballs (which have a circumference of 29.5-30 inches) instead of the standard women’s basketballs (circumference of 28.5-29 inches). Because the balls were not regulation size, the victories did not count. Students could use the given circumferences to find the surface area and volumes of each ball and see how significant the difference is, then discuss with their peers what the significance of different sized basketballs is. Although this is not an advanced practice idea, it is still a way for students to compute volume and surface area, as well as discover the significance of each of those properties in a way that could interest them, as many students are interested in sports and do not often think of math as playing a significant role in them. Computing the volume and surface area of the basketballs would also help them recognize the relationship between those and circumference.

 

 

Engaging students: Equations of two variables

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Trent Pope. His topic, from Algebra: equations of two variables.

green line

A1. What interesting (i.e., uncontrived) word problems using this topic can your students do now? (You may find resources such as http://www.spacemath.nasa.gov to be very helpful in this regard; feel free to suggest others.)

I found a website that has many word problems where students can solve for two variables. An example of one of these problems is “If a student were to buy a certain number of $5 scarfs and $2 hats for a total amount of $100, how many scarfs and hats did they buy?”. This example would give students a real world application of how we use two variable equations. It would show students that there are multi variable problems when we go to the store to shop for things, like food or clothing. An instance for food would be when a concession stand sells small and large drinks at a sporting event and want to know how many drinks they have sold at the end of the night. After using a two variable linear equation and knowing the price of the cups, total amount earned, and total cups sold, students would be able to solve for the number of small cups as well as large cups sold.
https://sites.google.com/site/harlandclub/Home/math/algebra/word2var

 

green line

B2. How does this topic extend what your students should have learned in previous courses?

This topic extends on the students’ ability to graph and solve a linear equation, which should have been taught in their previous classes. The only difference is that the variable, y, that you solved for in Pre-Algebra is now on the same side as the other variable. For instance, the equation y =(-1/4) x + 4 is the same as x + 4y = 16. We see that we solve for the same variables, but they are both on the same side. This is because you are solving the same linear equation. A linear equation can be written in multiple forms, as long as the forms have matching solutions. This is something that students could prove to you by graphing and solving the equations. They would solve the equations to see that they have the same variables. This makes students more aware that they need to be able to compute for other variables besides x if the question asks for it.

 

 

green line

 

E1. How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic? Note: It’s not enough to say “such-and-such is a great website”; you need to explain in some detail why it’s a great website.

The most effective way to engage a student about this topic is by using a graphing calculator. This is to help students make the visual connection with the topic and check to see if they have graphed the equations the correct way. Students learn more effectively through visual demonstration. Because students are the ones to solve for the equation and plug it into the calculator to check their work, they are going to be able to make that connection, and we will be able to verify that they understand the material. As teachers, we need to incorporate more technology into the ways of learning because we are surrounded by it daily. Using graphing calculators would be a great way to show and check the work of a two variable equation. This gives students a chance to see what mistakes they have made and what lose ends need to be tied up.

References

Solving Word Problems using a system with 2 variables. n.d. <https://sites.google.com/site/harlandclub/Home/math/algebra/word2var&gt;.

Predicate Logic and Popular Culture (Part 172): Clement Clarke Moore

Let C be the set of all creatures, let H(x) be the proposition “x is in the house,” and let S(x) be the proposition “x is stirring.” Translate the logical statement

\forall x \in C (H(x) \Rightarrow \lnot S(x)).

Of course, this matches the first two lines of one of the most popular poems in the English language.

green line

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.

Predicate Logic and Popular Culture (Part 171): Hunter Hayes

Let P be the set of all people, and let H(x,y) be the proposition “x has y.” Translate the logical statement

\forall x \in P (x \ne I \Rightarrow \exists y \in P(H(x,y)) \land \forall y \in P (\lnot H(I,y)).

This matches the chorus of this song by Hunter Hayes.

green line

Context: Part of the discrete mathematics course includes an introduction to predicate and propositional logic for our math majors. As you can probably guess from their names, students tend to think these concepts are dry and uninteresting even though they’re very important for their development as math majors.

In an effort to making these topics more appealing, I spent a few days mining the depths of popular culture in a (likely futile) attempt to make these ideas more interesting to my students. In this series, I’d like to share what I found. Naturally, the sources that I found have varying levels of complexity, which is appropriate for students who are first learning prepositional and predicate logic.

When I actually presented these in class, I either presented the logical statement and had my class guess the statement in actual English, or I gave my students the famous quote and them translate it into predicate logic. However, for the purposes of this series, I’ll just present the statement in predicate logic first.