Engaging students: Multiplying binomials

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Sarah McCall. Her topic, from Algebra: multiplying binomials.

B2. How does this topic extend what your students should have learned in previous courses?

My hope is that this topic may be easier to understand if student’s can first recall an easier concept that they have already mastered, and then build upon that foundation to learn new skills. For example, at this point students should have already learned the distributive property. To introduce this new concept, I would begin by writing 4(x-5)=4 on the board and asking students what the very first step would be to solve for x. They should know to start by distributing the four to both x and -5, to get 4x-20=4. After completing a few similar examples as a class and/or in groups, then the idea of multiplying binomials would be introduced. This way, students are less intimidated when presented with new material, and they will have a good understanding of how to distribute to each term.

D1. What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?

Teaching students some of the history behind what they are learning can be a great engaging tool. In this case it is helpful to know where the foil method first originated. I would incorporate this by discussing how it first was used in 1929; in William Bentz’ Algebra for Today. In Algebra for Today, Bentz was the first person to mention the “first terms, outer terms, inner terms, last terms” rule. Students should be knowledgeable about the history behind the math they are using, so that they realize the importance of this method. I also believe that it will be cool for students to see how a method developed is still relevant 88 years later. This technique was created in order to provide a memory aid, or “mnemonic device” to help students learn how to multiply binomials. The fact that it is still being used even today proves what an influential concept it was at its time, and throughout the years.

E1. How can technology (YouTube, Khan Academy [khanacademy.org], Vi Hart, Geometers Sketchpad, graphing calculators, etc.) be used to effectively engage students with this topic?

I am a huge fan of incorporating technology in the classroom, and YouTube is especially great because most students already use YouTube outside of school. The following clip (stopped at 1:48) provides a clear, concise explanation and demonstration of the FOIL method for multiplying binomials. It explains how factoring and foiling are related, and shows students which order to distribute in (first, outer, inner, last). The acronym FOIL is easy for students to remember, and gives them something that they can write down each time they complete a problem to help them distribute properly. Additionally, the clip is just under two minutes, which is the perfect time to ensure that students don’t zone out or lose interest before the end of the video. I would choose to follow up this video by completing a few examples as a class, emphasizing the four steps of foiling as mentioned in the video and how to use them.

References

http://pballew.blogspot.com/2011/02/origin-of-foil-for-binomial.html

This site uses Akismet to reduce spam. Learn how your comment data is processed.