Sphere Packing Solved in Higher Dimensions

I enjoyed reading this bit of mathematical news: https://www.quantamagazine.org/20160330-sphere-packing-solved-in-higher-dimensions/

The opening paragraphs:

In a pair of papers posted online this month, a Ukrainian mathematician has solved two high-dimensional versions of the centuries-old “sphere packing” problem. In dimensions eight and 24 (the latter dimension in collaboration with other researchers), she has proved that two highly symmetrical arrangements pack spheres together in the densest possible way.

Mathematicians have been studying sphere packings since at least 1611, when Johannes Kepler conjectured that the densest way to pack together equal-sized spheres in space is the familiar pyramidal piling of oranges seen in grocery stores. Despite the problem’s seeming simplicity, it was not settled until 1998, when Thomas Hales, now of the University of Pittsburgh, finally proved Kepler’s conjecture in 250 pages of mathematical arguments combined with mammoth computer calculations.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.