In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Tracy Leeper. Her topic, from Pre-Algebra: finding points on the coordinate plane.

How could you as a teacher create an activity or project that involves your topic?

After introducing the topic to the students, I will inform the students that we will be playing a game on the computer. After pulling up the game on the screen and demonstrating how it works, I will then issue a challenge using the maze game. The challenge will be to see how many mines they can avoid while using the least number of moves. Before class, I will play to get my best score, to show the students what I am looking for, and then I will see who can beat my score. To encourage the students to try their best, I will offer extra credit to anyone who can get through the same number of mines, with fewer moves. Multiple attempts are possible, and I will allow students to turn in their best game by the end of the week. By offering extra credit, it will encourage the students to play the game at home as well as in the classroom. This game will be fun for the students, as well as support the topic of finding points on the coordinate plane. A common struggle is confusing the x and y axis, so by playing the game it will reinforce the proper name for the corresponding axis, and which coordinate goes first in the ordered pair.

How can this topic be used in your studentsâ€™ future courses in mathematics or science?

Finding points on the coordinate plane is used in a variety of disciplines. Any type of graph used to represent data, with the exception of a pie chart, uses at least one quadrant of the coordinate plane. Typically, it is quadrant 1, since both numbers are positive. The graph is just labeled to reflect the data shown, instead of using x and y. Scientist use graphs to represent data that has been collected from either observation or experimentation, usually labeled as time and the correlating measurement. In math the coordinate plane is used to represent any function, with x as the input and y as the output, as well as helping to graph things that are not functions, such as circles, and other polygons. As well as adding a third dimension, and including a z axis for graphing 3D objects, such as spheres and cubes. The coordinate plane is also used in other disciplines, such as geography, for determining map coordinates.

How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

Video games have changed tremendously since the days of Pong. The graphics, storylines, characters, and amount of programming required has become much more intricate. One aspect of the games that appeals to players is the moving background that changes and shifts according to where the character is in the game, and how the camera angle is changed by the player. This enables different scenery and perspectives throughout the game. This is done by using points on a 3D graph, and as the character moves, the reference changes according to their position. The fundamental skill for being able to build the game this way, is to first learn how to plot points on a 2D graph. Since most teenagers like video games, and the graphics involved, this would be a good point to make, so the students could see the connection between the math they are learning, and something they really enjoy doing. This same skill is used for calculating GPS coordinates on our phones and computers.

References:

http://www.shodor.org/interactivate/activities/MazeGame/