Inverse Functions: Arccosine and SSS (Part 21)

Arccosine has an important advantage over arcsine when solving for the parts of a triangle: there is no possibility ambiguity about the angle.

Solve \triangle ABC if a = 16, b = 20, and c = 25.

When solving for the three angles, it’s best to start with the biggest angle (that is, the angle opposite the biggest side). To see why, let’s see what happens if we first use the Law of Cosines to solve for one of the two smaller angles, say \alpha:

a^2 = b^2 + c^2 - 2 b c \cos \alpha

256 = 400 + 625 - 1000 \cos \alpha

-769 = -1000 \cos \alpha

0.769 = \cos \alpha

\alpha \approx 39.746^\circ

So far, so good. Now let’s try using the Law of Sines to solve for \gamma:

\displaystyle \frac{\sin \alpha}{a} = \displaystyle \frac{\sin \gamma}{c}

\displaystyle \frac{\sin 39.746^\circ}{16} \approx \displaystyle \frac{\sin \gamma}{25}

0.99883 \approx \sin \gamma

Uh oh… there are two possible solutions for \gamma since, hypothetically, \gamma could be in either the first or second quadrant! So we have no way of knowing, using only the Law of Sines, whether \gamma \approx 87.223^\circ or if \gamma \approx 180^\circ - 87.223^\circ = 92.777^\circ.

green lineFor this reason, it would have been far better to solve for the biggest angle first. For the present example, the biggest answer is \gamma since that’s the angle opposite the longest side.

c^2 = a^2 + b^2 - 2 a b \cos \gamma

625 = 256 + 400 - 640 \cos \gamma

-31 =-640 \cos \gamma

0.0484375 = \cos \gamma

Using a calculator, we find that \gamma \approx 87.223^\circ.

We now use the Law of Sines to solve for either \alpha or \beta (pretending that we didn’t do the work above). Let’s solve for \alpha:

\displaystyle \frac{\sin \alpha}{a} = \displaystyle \frac{\sin \gamma}{c}

\displaystyle \frac{\sin \alpha}{16} \approx \displaystyle \frac{\sin 87.223}{25}

\sin \alpha \approx 0.63949

This equation also has two solutions in the interval [0^\circ, 180^\circ], namely, \alpha \approx 39.736^\circ and \alpha \approx 180^\circ - 39.736^\circ = 140.264^\circ. However, we know full well that the answer can’t be larger than \gamma since that’s already known to be the largest angle. So there’s no need to overthink the matter — the answer from blindly using arcsine on a calculator is going to be the answer for \alpha.

Naturally, the easiest way of finding \beta is by computing 180^\circ - \alpha - \gamma.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.