In this series of posts, I consider how two different definitions of the number are related to each other. The number
is usually introduced at two different places in the mathematics curriculum:
- Algebra II/Precalculus: If
dollars are invested at interest rate
for
years with continuous compound interest, then the amount of money after
years is
.
- Calculus: The number
is defined to be the number so that the area under the curve
from
to
is equal to
, so that
.
These two definitions appear to be very, very different. One deals with making money. The other deals with the area under a hyperbola. Amazingly, these two definitions are related to each other. In this series of posts, I’ll discuss the connection between the two.
We begin with the second definition, which is usually considered the true definition of . From this definition, I have shown in a previous post that we can derive the differentiation formulas
and
beginning with this definition of the number .
Theorem. .
Proof #1. Recall the definition of a derivative
.
Let’s apply this to the function :
(I’ll note parenthetically that I’ll need the above line for a future post in this series.) At this point, let’s substitute :
Let’s now apply the exponential function to both sides:
Since is continuous, we can interchange the function and the limit on the right-hand side:
Finally, since and
are inverse functions, we can conclude
.
(A second proof of this theorem, using L’Hopital’s Rule, will be presented in tomorrow’s post.)
The next theorem establishes, at last, the connection between the continuous compound interest formula and the area under the hyperbola. I’ve noted that my students feel a certain sense of accomplishment after reaching this point of the exposition.
Theorem. .
Proof. Though a little bit of real analysis is necessary to make this rigorous, we can informally see why this has to be true by letting for
positive. Then the expression
becomes
. Also, as
, then
.
One thought on “Different definitions of e (Part 7): Connecting the two definitions”