# Calculators and complex numbers (Part 21)

In this series of posts, I explore properties of complex numbers that explain some surprising answers to exponential and logarithmic problems using a calculator (see video at the bottom of this post). These posts form the basis for a sequence of lectures given to my future secondary teachers.

To begin, we recall that the trigonometric form of a complex number $z = a+bi$ is

$z = r(\cos \theta + i \sin \theta) = r e^{i \theta}$

where $r = |z| = \sqrt{a^2 + b^2}$ and $\tan \theta = b/a$, with $\theta$ in the appropriate quadrant. As noted before, this is analogous to converting from rectangular coordinates to polar coordinates.

Over the past few posts, we developed the following theorem for computing $e^z$ in the case that $z$ is a complex number.

Definition. Let $z = r e^{i \theta}$ be a complex number so that $-\pi < \theta \le \theta$. Then we define

$\log z = \ln r + i \theta$.

Of course, this looks like what the definition ought to be if one formally applies the Laws of Logarithms to $r e^{i \theta}$. However, this complex logarithm doesn’t always work the way you’d think it work. For example,

$\log \left(e^{2 \pi i} \right) = \log (\cos 2\pi + i \sin 2\pi) = \log 1 = \ln 1 = 0 \ne 2\pi i$.

This is analogous to another situation when an inverse function is defined using a restricted domain, like

$\sqrt{ (-3)^2 } = \sqrt{9} = 3 \ne -3$

or

$\sin^{-1} (\sin \pi) = \sin^{-1} 0 = 0 \ne \pi$.

The Laws of Logarithms also may not work when nonpositive numbers are used. For example,

$\log \left[ (-1) \cdot (-1) \right] = \log 1 = 0$,

but

$\log(-1) + \log(-1) = \log \left( e^{\pi i} \right) + \log \left( e^{\pi i} \right) = \pi i + \pi i = 2\pi i$.

For completeness, here’s the movie that I use to engage my students when I begin this sequence of lectures.

## 3 thoughts on “Calculators and complex numbers (Part 21)”

This site uses Akismet to reduce spam. Learn how your comment data is processed.