In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.
I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).
This student submission again comes from my former student Erick Cordero. His topic, from Geometry: finding the area of a triangle.
B1. How can this topic be used in your students’ future courses in mathematics or science?
Students in high school usually take geometry during the first or second year, and after that they might not see it again until college. Three years might be the wait until a student sees geometry again, nevertheless, geometry does come back in the form of trigonometry. Trigonometry is a class taken right before pre-calculus and it is here where students truly see geometry again. The importance of the triangle in geometry is enormous and in fact, there would not be any trigonometry if it were not because of triangles. Students learn in this class different ways of getting the area of a triangle because they are no longer given the height and the length of the base, now students are given angles or other information and they have to somehow find the area. The topic of area is also used throughout college in math classes, although we are not always finding the area of a triangle, we are nonetheless finding the area of something. To make everything even better, those students who decide to become teachers have to take a course called foundations of geometry. Now it is here were the student really understands the triangles and the axiomatic method of doing proofs.
D1. What interesting things can you say about the people who contributed to the discovery and/or the development of this topic?
http://www.britannica.com/EBchecked/topic/194880/Euclid
http://aleph0.clarku.edu/~djoyce/java/elements/toc.html
In ancient Greece, mathematicians did not deal with the concept of area as we do today. In fact, numbers were not used in geometry and mathematicians had other creative ways of expressing algebraic expression. The great mathematician, Euclid, whom was born in 300 BC, would be the person who would unify all the geometry that was around at the time. Euclid’s greatest contributions and perhaps the most famous book in the history of mathematics, The Elements, is a book that for hundreds of years was the standard way of doing geometry. Euclid’s approach is what is referred to as axiomatic geometry in which one proves geometric expression on the basis on a few assumptions that are assumed to be obvious. In many of his proofs, Euclid compares different triangles in order to learn more about the situation or scenario he is trying to prove. Euclid has a nice way of defining the area of a triangle. He first proves that one can construct a parallelogram and then he proves that two triangles fit into this parallelogram, and thus the area of a triangle is half a parallelogram.
Thus, Euclid defines the area of a triangle in terms of parallelograms. He proves this by using the basic properties of a parallelogram, such as the fact the opposite angles and sides are congruent, to prove that in fact two congruent triangles can fit into a parallelogram.
E. How can technology be used to effectively engage students with this topic?
http://aleph0.clarku.edu/~djoyce/java/elements/toc.html
The website above is a great website for high school students to look at, but because of the language (sounds ancient) I would prefer to go and explore this website with the students. This website contains Euclid’s elements and although the students would not be expect to know how to do all the proofs, I would expect them to know how to prove the formula for the area of a triangle using Euclidian methods. I think the history that this website contains is amazing and it also has diagrams of the way Euclid did his proofs and students like pictures, especially with math, so this would be good. The wording on the website could cause students some problems but for the immense knowledge they can learn from visiting this website, I believe its worth it. Students will get introduce to this beautiful way of proving geometric theorems, methods that were developed hundreds of years ago and are still being used in universities today. I believe this is something incredibly amazing and every student in geometry should at least be familiar with this method of proving things. I believe students will enjoy this way of doing proofs because it is new (it is new to them) and it is not so rigid and mechanical as algebra might have seemed to them. Also, I believe it is only right that they get to know, from reading some of the proofs, who this great mathematician that we know as Euclid was and the immense influence he had in the history of mathematics.
