In my capstone class for future secondary math teachers, I ask my students to come up with ideas for *engaging* their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Rebekah Bennett. Her topic, from Pre-Algebra: finding points on the coordinate plane.

**Applications: How could you as a teacher create an activity or project that involves your topic?**

** **

For this topic, the first thing that came to mind was battleship. The game was introduced to me when I was around 8 or 9 years old. The mathematical content that the game expresses never really occurred to me until I became older and made a connection. The game board for battleship is simply one quadrant of the coordinate plane and the players call out coordinates which are found on the game board. This is the same as finding a point on the coordinate plane but in a much more fun way of doing so.

For those of you who do not know what the game is, here is a quick clip from Seinfeld where they are playing the game.

To make things interesting, we will play Human Battleship. For this activity you would need a large area that can be marked off as a grid, such as a gym or field. Each group will have at least 4 students (ships) that they can place strategically on their side. Since there is no barrier between the sides, the captains must face the opposite direction to ensure they have not seen the opponent’s ships locations. Now each captain will take turns calling out coordinate points and having them recorded by their co-captain. The shipmates must go to each point and yell hit or miss, marking a hit with a red flag and miss with a white flag. When a ship is sunk the shipmates will make a bombing sound so that both captains know they are a down a ship. The students will continue to do this until one team has all their ships sunk and the other is declared the winner.

**Curriculum: How can this topic be used in your students’ future courses in mathematics or science?**

This topic is used continually throughout mathematics and builds up to something more every day in math. It is a basis for learning how to work with graphs. Students learn how to plot points now and then later they learn how to create graphs according to the points. With graphs, they will learn how to move points along the coordinate plane, learning new vocabulary such as; translation, rotation, reflection, stretch and shrink. Students will then learn how to draw a line using slope to connect one point to another and find the distance between those 2 points. The x and y values work as an input, output function. All these things are based on the simple concept of plotting points which we use in every day math.

This topic is also used throughout the scientific world. The student learns how to make scatter plots and line graphs. Also, science uses functions as well. In science students record data in a table using an x and y value but are typically labeled according to a real life experiment such as growth and amount of water. When conducting research or displaying data the student uses the same techniques for graphs that were learned in math and applies them to science, which builds more and more everyday as well.

**History: How was this topic adopted by the mathematical community?**

During the European Renaissance, mathematics was split into two separate subjects of geometry and algebra. They didn’t coincide. Algebraic equations were only used in algebra and people only drew pictures in geometry. Rene Descartes changed the whole outcome and combined both subjects together developing a brighter future for mathematics.

Descartes’ method involved two number lines. The student was already introduced to the basic number line in elementary and then introduced to a number line with negative numbers during 8th or 9th grade completing the number line. Knowing that the students have full knowledge of a number line, Descartes decided to put two number lines together. The traditional number line is horizontal and rotated the other number line 90 degrees (vertical) where both of the number lines intersect at zero. These two lines are called axes; such as x-axis (horizontal line) and y-axis (vertical line). Since a number line stretches in both directions, the axes will have arrows on each end. The whole area, side to side, top to bottom, and stretching infinitely in all directions creates a plane. When constructing two axes within a plane, it is then converted to a Cartesian Plane. The name “Cartesian” was derived from the name “Descartes.” From creating a plane, the student can now find a point on the plane using the coordinate pair they are given.

Sources:

http://simple.wikipedia.org/wiki/Cartesian_coordinate_system