I just read “But My Physics Teacher Said… A Mathematical Approach to a Physical Problem,” which was a very interesting pedagogical article concerning the teaching of calculus. Here’s the central problem:
I included on their exam a question involving average velocity. I gave the students a quadratic function and asked them to calculate the average velocity over a given interval… One of my students… got the final numerical answer correct, but he hadn’t used the average velocity formula he had learned in our course. Instead… he had calculated the average of the velocities at the end points of the given interval. When I explained this to him, he stated that he didn’t understand the difference because he had learned the latter formula to calculate average velocity in his physics class.
It turns out that this alternative approach always work under the condition of constant acceleration (i.e., a quadratic function), and since constant acceleration is such an important special case in freshman physics, the formula was presented and the student remembered the formula. Of course, the student probably was not aware of the formula was only generally true under this specific circumstance.
After some pedagogical reflection, the author concluded
My student and I both learned from this experience. He gave me the opportunity to look at a familiar topic with the eye of a physicist, and I taught him the importance of context when using a formula. Specific adventures such as the one my student and I encountered will undoubtedly strengthen my approach to teaching this course and my students’ ability to think like mathematicians.
The full article can be found at http://digitaleditions.walsworthprintgroup.com/publication/?i=187509&p=19.