Gravity wells

xkcdgravity_wells

This is one of most creative diagrams that I’ve ever seen: the depth of various solar system gravity wells. A large version of this image can be accessed at http://xkcd.com/681_large/.

From the fine print:

Each well is scaled so that rising out of a physical well of that depth — in constant Earth surface gravity — would take the same energy as escaping from that planet’s gravity in reality.

Depth = \displaystyle \frac{G M}{g r}

It takes the same amount of energy to launch something on an escape trajectory away from Earth as it would to launch is 6,000 km upward under a constant 9.81 \hbox{m}/\hbox{s}^2 Earth gravity. Hence, Earth’s well is 6,000 km deep.

Here’s some more details about the above formula.

Step 1. The escape velocity from the surface of a spherical planet is

v = \displaystyle \sqrt{ \frac{2GM}{r} },

where G is the universal gravitational constant, M is the mass of the planet, and r is the radius of the planet. Therefore, the kinetic energy needed for a rocket with mass m to achieve this velocity is

E = \displaystyle \frac{1}{2} m v^2 = \frac{GMm}{r}

Step 2. Suppose that a rocket moves at constant velocity upward near the surface of the earth. Then the force exerted by the rocket exactly cancel the force of gravity, so that

F = mg,

where g is the acceleration due to gravity near Earth’s surface. Also, work equals force times distance. Therefore, if the rocket travels a distance d against this (hypothetically) constant gravity, then

E = mgd

The depth formula used in the comic is then found by equating these two expressions and solving for d.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.