# Engaging students: Order of operations

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Theresa (Tress) Kringen. Her topic, from Pre-Algebra: order of operations.

How can this topic be used in your students’ future courses in mathematics or science?

Order of operations is commonly used in most mathematics problem that involve more than one operation or when parenthesis are involved. It would be easy to show the students what the answer to a given problem, say 5+20/5, would be when using the proper order of operations, then solve the problem by solving left to right as you would read a book. It is clear, to a math major, that the answer is 9. For someone who does not know the order of operations, they most likely would come up with the answer of 5. The difference in the correct answer and the incorrect answer is only 4, but the problem is only working with numbers less than or equal to twenty. It would then be beneficial to point out that when dealing with more complex problems, that this answer may become even larger.  If the class was working on given problems, I would give them a few word problems to solve. Once they solved them on their own, I would show them that the difference between the correct way to answer the given problem and the incorrect way to answer the problem to help them connect the concept to why it is important to compute answers in the way.

How does this topic extend what your students should have learned in previous courses?

This topic extends what students should have previously learned by allowing them to use their skills of multiplication, division, exponents, addition, and subtraction to solve more complex problems. When learning how to solve problems more complicated than what they have been given in the past, they use this topic to guide them through to the next step. They must already be familiar with all of the operations by themselves prior to using the order of operations to solve a problem. Once they are accustomed to using the order of operations, the will be given more challenging problems and their math skills will build upon itself. It is clear that if a student is unable to solve a simple problem, such as an exponent problem or a more complicated division problem, they will not be able to use the order of operations for problems that contain what they have not learned.

How did people’s conception of this topic change over time?

It is believed that the idea of using multiplication before addition became a concept adopted around the 1600s and was not disagreed about. The other operations took their place in the order over time, beginning in the 1600s. It seems that although it was not documented well, most mathematicians agreed upon the same order. It wasn’t until books stated being published that it was important to document the order of operations. The notation may have been different depending on who was writing on the subject, but the concept was the same. It seems that although it was not documented well, most mathematicians agreed upon the same order. Once books were being published, the order, PEMDAS (Parenthesis, Exponents, Multiplication, Division, Addition, and Subtraction), was put into print. Now, teachers use the phrase Please Excuse My Dear Aunt Sally as a way for students to remember the acronym and are able to put it to use.

http://jeff560.tripod.com/operation.html

http://mathforum.org/library/drmath/view/52582.html

This site uses Akismet to reduce spam. Learn how your comment data is processed.