In Calculus I, we teach two different techniques for finding the volume of a solid of revolution:

- Disks (or washers), in which the cross-section is perpendicular to the axis of revolution, and
- Cylindrical shells, in which the cross-section is parallel to the axis of revolution.

Both of these could be expressed as either an integral with respect to x or as an integral with respect to y, depending on the axis of revolution. I won’t go into a full treatment of the procedure here; this can be found in places like http://www.cliffsnotes.com/math/calculus/calculus/applications-of-the-definite-integral/volumes-of-solids-of-revolution or http://mathworld.wolfram.com/SolidofRevolution.html or http://en.wikipedia.org/wiki/Disk_integration or http://en.wikipedia.org/wiki/Shell_integration.

A natural question asked by students is, “If I have the choice, should I use disks or shells?” The correct answer, of course, is “Pick the method that gives you the easier integral to compute.” But that’s not a very satisfying answer for novice students who’ve just been exposed to integral calculus. So, over the years, I developed a standard reply to this query:

That’s an excellent question, and it’s one of the classic conundrums faced by mankind over the years.

Should I choose Coke… or Pepsi?

McDonald’s… or Burger King?

Ginger… or Mary Ann?

Disks… or shells?

The answer is, it just takes a little practice and experience to determine which technique gives you the easier integral.

If you don’t get the cultural reference, here’s a reminder. As of 10 years ago, I could still tell this joke to college students and still get smiles of acknowledgement. But, given the passage of time, I’m not sure if this same joke would fly college students now.