Engaging students: Finding the volume and surface area of a pyramid or cone

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Natalie Moore. Her topic, from Geometry: finding the volume and surface area of a pyramid or cone.

green line

How could you as a teacher create an activity or project that involves your topic?

A great thing that first came to my mind was using manipulatives, especially for finding surface area. I would prefer to use legos as a manipulative, but that will not work very well when trying to find surface area of a pyramid or a cone. Using the traditional math manipulatives will work fine for these types of shapes. I always loved using manipulatives as a student. However, we did not use them at all, from what I can remember, in high school and most of middle school. It would be great to bring more manipulative use into the high school classrooms. It makes learning more fun for the students, and it also helps the student with retaining the information better. In regards to finding the volume of a pyramid or cone with manipulatives, it will be a little more of a challenge. Instead of maybe using manipulatives though, I was thinking about a different fun activity. The activity I have in mind will not necessarily tell us the exact volume of these shapes, but it will give the students an idea of what volume is. That way, once students have an understanding of volume, once they have a formula, it will be easier for them to use it and it apply it to a problem. The activity I have in mind is taking large versions of these shapes and filling them up with a different object and counting how many of that object can fit into different sizes of the shapes. For example, I would use a camping tent to represent a pyramid. I would have two or three different sizes of tents. I would then see how many students can fit in each sized tent. That way, they can see X amount of students can fit in one tent while Y amount of students fit in a different sized tent. For cones, I would do the same type of thing but the object I would use would be an ice cream cone and see how many scoops can fit into various sizes.

green line

How can this topic be used in your students’ future courses in mathematics or science?

Surface area, mainly just area, and volume show up all the time in other math classes, especially calculus based courses. In these types of higher level thinking courses, students will not necessarily have to find the area or volume of shapes, but if a student has to answer a word problem involving area and/or volume and they do not of a good grasp on these concepts, it will be harder for them to solve the word problem. There are times too where the student will have to solve the area or volume of a specific shape, and it will not always be something as simple as a square or rectangle. We need to make sure as teachers that we are doing all we can to instill these concepts into the students since they will need to know them for classes later on.

 

 

 

green line

How does this topic extend what your students should have learned in previous courses?

Before students will learn about the volume and surface area of pyramids and cones, they will typically learn about finding the area of rectangles and squares since those are the easiest to work with. Students are taught pretty early on how to find area of squares, rectangles, triangles, and circles. As they get older, they will learn about other shapes as well, especially 3-d shapes. After students have the basics of area down, then they will begin to learn about surface area and volume of these 3-d shapes. This is taking what they already know and taking it a step further to deepen their understanding.

 

 

 

Area of a Triangle and Volume of Common Shapes: Index

I’m using the Twelve Days of Christmas (and perhaps a few extra days besides) to do something that I should have done a long time ago: collect past series of posts into a single, easy-to-reference post. The following posts formed my series on different ways of finding the area of a triangle as well as finding the volumes of common shapes.

Part 1: Deriving the formula A = \displaystyle \frac{1}{2} bh.

Part 2: Cavalieri’s principle and finding areas using calculus.

Part 3: Cavalieri’s principle and finding the volume of a pyramid and then the volume of a sphere.

Part 4: Finding the area of a triangle using the Law of Sines.

Part 5: Finding the area of a triangle using the Law of Cosines.

Part 6: Finding the area of a triangle using the triangle’s incenter.

Part 7: Finding the area of a triangle using a determinant and the coordinates of the vertices.

Part 8: Finding the area of a triangle using Pick’s theorem.

 

 

Engaging students: Finding the volume and surface area of pyramids and cones

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Laura Lozano. Her topic, from Geometry: finding the volume and surface area of pyramids and cones.

green line

C1. How has this topic appeared in pop culture (movies, TV, current music, video games, etc.)?

Now days, pyramids have appeared almost all over pop culture because of the illuminati conspiracy. Famous artist like Katy Perry, Kanye West, Jay-Z, Beyoncé, and many others are believed to be part of this group that practices certain things to retain their wealth. Since it’s a conspiracy, it might not be true. Although that’s another topic, they all use an equilateral triangle and pyramids to represent they are part of the illuminati group. They display it in their music videos and while they are performing at a concert or awards show.

In Katy Perry’s new music video, were she portrays herself as a Egyptian queen, for some weird reason, she has a pyramid made out of what looks like twinkies.

LL1

To make this, the base and height had to be measured to create the surface area of the pyramid.

Also, the picture below is from Kanye West’s concerts. He is at the top of the pyramid.

LL2

To make this, they had to consider the size of the stage to fit the pyramid. So the size of the base depended on the size of the stage.

The most famous cone is the ice cream cone. When most people think of cone they initially think ice cream! Ice cream cones are made using the surface area of a cone and taking into consideration the volume of the cone. The bigger the surface area, the bigger the volume, the more ice cream!

LL3green line

C2. How has this topic appeared in high culture (art, classical music, theatre, etc.)

Some musical instruments have the form of a cone. For example, the tuba, trumpet, and the French horn all have a cone like shape.

LL4

 

The sound that comes out of the instrument depends on the volume of the cone shaped part as well as the other parts of the instrument. The bigger volume of the cone shaped part is, the deeper the sound, the smaller the volume of the cone shaped part is, the higher pitched it is.

Pyramids can be used in art work. Most of the art work done with pyramids is paintings of the Egyptian Pyramids. But, they can also be used to make sculptures of abstract art. Here is one example of an abstract sculpture made from recycled materials.

 

LL5

 

If the sculpture is hallow, then to make it you would only need the surface area. If it’s not, then you would also need to calculate the volume to see how much recycled material was used.

green line

D5. How have different cultures throughout time used this topic in their society?

In ancient history, the Egyptians used to build pyramids to build a tomb for pharaohs and their queens to protect their bodies after their death. The pyramids were built to last forever. No one knows exactly how they built the pyramids but people have had theorys on how they were built.

The most famous pyramids are the Pyramids of Giza. The pyramids are Pyramid Khafre, Pyramid Menkaure, and Pyramid Khufu. It is the biggest and greatest pyramid of Egypt. This pyramid used to measure about 481 feet in height and the base length is about 756 feet long. However, because the pyramid is very very old, erosion causes changes in the measurements of the pyramid. When scientiest and archeologist had to find the differrent measurements they most likely used the formula to find the volume and surface area of the pyramid. However, back then, the formula was probably not discovered yet.

 

LL6

An example for cones is the conical hat. Used by most the Asian culture, conical hats, also know as rice hats, or farmers hat, were worn by farmers, and they are still somewhat used today. There are many types of conical hats that can be made today. Some are widder than others, and some are taller than others. To make the hats, the maker of the hat has to consider the surface area of the hat to make the hat properly.

LL7.

Resources:

http://www.history.com/topics/ancient-history/the-egyptian-pyramids

http://www.thelineofbestfit.com/news/latest-news/kanye-wests-yeezus-stage-show-includes-mountains-pyramids-and-jesus-impersonator-139788

http://www.youtube.com/watch?v=0KSOMA3QBU0

http://earthmatrix.com/great/pyramid.htm

Engaging students: Volume and surface area of pyramids and cones

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Angel Pacheco. His topic, from Geometry: finding the volume and surface area of pyramids and cones.

green line

How has this topic appeared in high culture (art, classical music, theatre, etc.)?

Giza

Show an example of the pyramid of Giza, give them dimensions of the pyramid as well as the dimensions of the blocks that were used to build it and have the students guess how many blocks it took to build it. The students can use this as a competitive edge to want to get the correct answer. Students will have to solve for the surface area of the pyramid and the area of the face of the block. There can also be an example where I will tell the students if the pyramid was fill of blocks and they’re given the dimensions of the pyramid and block. They then find the volume of both to determine how many blocks can fill in the pyramid.

Greek_ampitheater

I will then show an image of a Greek amphitheater and explain how it resembles a cone. I will give them dimensions of a Greek amphitheater and have them find the surface area and the volume of cone if the amphitheater was folded into a cylinder.

 

green line

How can this topic be used in your students’ future courses in mathematics or science?

Students will be reintroduce to the volume of a cone in multivariable calculus when they learn about triple integrals and the different forms of integrals, like Cartesian, Polar, and Spherical coordinates. Surface Area and Volume of both the shapes will be seen in architectural engineering whenever they come across an assignment or job that requires them to find how big the cone or pyramid is in their draft of a monument or building.

This topic can also assist the students in their Geometry class in high school as well as college level. In mathematics, it’s better if there is a stronger foundation build in the early ages. When students face volume and surface area of pyramids and cones, they will gain more knowledge of the concept as time progresses. It’s always good to start early. Talking to students about different shapes and their areas and volumes gives them perspective in geometry.

 

green line

How have different cultures throughout time used this topic in their society?

In Ancient Greece, there were famous scientists that contained vast amount of knowledge. For example, Thales of Miletus and Democritus were some of the scientists that used surface area and volumes of cones and pyramids. Democritus was one of the first to observe that cones and square pyramids were one third of the volume of a cylinder and prism, respectively if they have similar measurements. I would use this as an engagement because Greek mythology is pretty popular. This could be used to show students that the math they are doing today is similar to the math that was done in the past, ancient past.

In Ancient Egypt, square pyramids were used to create the famous pyramids of Egypt such as the Pyramid of Giza. Pyramids were used to idolize their kings. The Mayan Indians also used pyramids to idolize their leaders. Bringing up different examples of different cultures that talk about the shapes they see in class then it can grab their attention. The link below is a lesson that talks about surface area and volume of cones and pyramids. It seems as an effective tool to assess students if they understand the concepts of SA and Volume.

Source: http://www.cordonline.net/cci_bridges_pdfs/Bridges12_12-5.pdf

 

Area of a triangle: Vertices (Part 7)

Suppose that the vertices of a triangle are (1,2), (2,5), and (3,1). What is the area of the triangle?

At first blush, this doesn’t fall under any of the categories of SSS, SAS, or ASA. And we certainly aren’t given a base b and a matching height h. The Pythagorean theorem could be used to determine the lengths of the three sides so that Heron’s formula could be used, but that would be extremely painful to do.

Fortunately, there’s another way to find the area of a triangle that directly uses the coordinates of the triangle. It turns out that the area of the triangle is equal to the absolute value of

\displaystyle \frac{1}{2} \left| \begin{array}{ccc} 1 & 2 & 1 \\ 2 & 5 & 1 \\ 3 & 1 & 1 \end{array} \right|

Notice that the first two columns contain the coordinates of the three vertices, while the third column is just padded with 1s. Calculating, we find that the area is

\left| \displaystyle \frac{1}{2} \left( 5 + 6 + 2 - 15 - 4 - 1 \right) \right| = \left| \displaystyle -\frac{7}{2} \right| = \displaystyle \frac{7}{2}

In other words, direct use of the vertices is, in this case, a lot easier than the standard SSS, SAS, or ASA formulas.

A (perhaps) surprising consequence of this formula is that the area of any triangle with integer coordinates must either be an integer or else a half-integer. We’ll see this again when we consider Pick’s theorem in tomorrow’s post.

green line

There is another way to solve this problem by considering the three vertices as points in \mathbb{R}^3. The vector from (1,2,0) to (2,5,0) is \langle 1,3,0 \rangle, while the vector from (1,2,0) to (3,1,0) is \langle 2,-1,0 \rangle. Therefore, the area of the triangle is one-half the length of the cross-product of these two vectors. Recall that the cross-product of the two vectors is

\langle 1,3,0 \rangle \times \langle 2,-1,0 \rangle = \left| \begin{array}{ccc} {\bf i} & {\bf j} & {\bf k} \\ 1 & 3 & 0 \\ 2 & -1 & 0 \end{array} \right|

\langle 1,3,0 \rangle \times \langle 2,-1,0 \rangle = -7{\bf k}

So the length of the cross-product is clearly 7, so that the area of the triangle is (again) \displaystyle \frac{7}{2}.

green line

The above technique works for any triangle in \mathbb{R}^3. For example, if we consider a triangle in three-dimensional space with corners at (1,2,3), (4,3,0), and (6,1,9), the area of the triangle may be found by “subtracting” the coordinates to find two vectors along the sides of the triangle and then finding the cross-product of those two vectors.

Furthermore, determinants may be used to find the volume of a tetrahedron in \mathbb{R}^3. Suppose that we now consider the tetrahedron with corners at (1,2,3), (4,3,0), (6,1,9), and (2,5,2). Let’s consider (1,2,3) as the “starting” point and subtract these coordinates from those of the other three points. We then get the three vectors

\langle 3,2,-3 \rangle, \langle 5,-1,6 \rangle, and \langle 1,3,-1 \rangle

One-third of the absolute value of the determinant of these three vectors will be the volume of the tetrahedron.

green line

This post has revolved around one central idea: a determinant represents an area or a volume. While this particular post has primarily concerned triangles and tetrahedra, I should also mention that determinants are similarly used (without the factors of 1/2 and 1/3) for finding the areas of parallelograms and the volumes of parallelepipeds.

This central idea is also the basis behind an important technique taught in multivariable calculus: integration in polar coordinates and in spherical coordinates.
In two dimensions, the formulas for conversion from polar to rectangular coordinates are

x = r \cos \theta and y = r \sin \theta

Therefore, using the Jacobian, the “infinitesimal area element” used for integrating is

dx dy = \left| \begin{array}{cc} \partial x/\partial r & \partial y/\partial r \\ \partial x/\partial \theta & \partial y/\partial \theta \end{array} \right| dr d\theta

dx dy = \left| \begin{array}{cc} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{array} \right| dr d\theta

dx dy = (r \cos^2 \theta + r \sin^2 \theta) dr d\theta

dx dy = r dr d\theta

Similarly, using a 3 \times 3 determinant, the conversion dx dy dz = r^2 \sin \phi dr d\theta d\phi for spherical coordinates can be obtained.
References:

http://www.purplemath.com/modules/detprobs.htm

http://mathworld.wolfram.com/Parallelogram.html

http://en.wikipedia.org/wiki/Parallelogram#Area_formulas

http://mathworld.wolfram.com/Parallelepiped.html

http://en.wikipedia.org/wiki/Parallelopiped#Volume