Engaging students: Solving linear systems of equations with matrices

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission comes from my former student Alyssa Dalling. Her topic, from Algebra II: finding the area of a square or rectangle.

green line

A. What interesting (i.e., uncontrived) word problems using this topic can your students do now?

A fun way to engage students on the topic of solving systems of equations using matrices is by using real world problems they can actually understand. Below are some such problems that students can relate to and understand a purpose in finding the result.

  • The owner of Campbell Florist is assembling flower arrangements for Valentine’s Day. This morning, she assembled one large flower arrangement and found it took her 8 minutes. After lunch, she arranged 2 small arrangements and 15 large arrangements which took 130 minutes. She wants to know how long it takes her to complete each type of arrangement.

(Idea and solution on http://www.ixl.com/math/algebra-1/solve-a-system-of-equations-using-augmented-matrices-word-problems )

  • The Lakers scored a total of 80 points in a basketball game against the Bulls. The Lakers made a total of 37 two-point  and three-point baskets. How many two-point shots did the Lakers make? How many three-point shots did the Lakers make?

(Idea and solution on http://www.algebra-class.com/system-of-equations-word-problems.html )

green line

A. How could you as a teacher create an activity or project that involves your topic?

  • For this topic, creating a fun activity would be one of the best ways to help students learn and explore solving systems of equations using matrices. One way in which this could be done is by creating a fun engaging activity that allows the students to use matrices while completing a fun task. The type of activity I would create would be a sort of “treasure hunt.” Students would have a question they are trying to find the solution for using matrices. They would solve the system of equations and use that solution to count to the letter in the alphabet that corresponds to the number they found. In the end, the solution would create different blocks of letters that the student would have to unscramble.

For Example: The top of the page would start a joke such as “What did the Zero say to the Eight?…

Solve x+y=26 and 4x+12y=90 using matrices.

To solve this, the student would put this information into a matrix and find the solution came out to be x=12 and y=14. They would count in the alphabet and see that the 12th letter was L and the 14th letter was N. Then at the bottom of their page, they would find where it said to write the letters for x and y such as below-

N  __  __  __     __  __    L  __! (Nice Belt!)

x     a    c    z       d    z     y    w

green line

E. How can technology be used to effectively engage students with this topic?

This activity would be used after students have learned the basics of putting a matrix into their calculator to solve. The class would be separated into small groups (>5 or more if possible with 2-3 kids per group) The rules are as follows: a group can work together to set up the equation, but each individual in the group had to come up to the board and write out their groups matrices and solution. The teacher would hand out a paper of 8-12 problems and tell the students they can begin. The first group to finish all the problems correctly on the board wins. There would be problems ranging from 2 variables to 4.

Ex: One of the problems could be  and . The groups would have to first solve this on their paper using their calculator then the first person would come up to the board to write how they solved it-

Written on the board:

Alyssa_system

The technology of calculators allows this to be a fun and fast paced game. It will allow students to understand how to use their calculator better while allowing them to have fun while learning.

Matrix transform

matrix_transform

Source: http://www.xkcd.com/184/

P.S. In case you don’t get the joke… and are wondering why the answer isn’t [a_2, -a_1]^T…  the matrix is an example of a rotation matrix. This concept appears quite frequently in linear algebra (not to mention video games and computer graphics). In the secondary mathematics curriculum, this device is often used to determine how to graph conic sections of the form

Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,

where B \ne 0. I’ll refer to the MathWorld and Wikipedia pages for more information.

Engaging students: Computing the determinant of a matrix

In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.

I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).

This student submission again comes from my former student Caitlin Kirk. Her topic: computing the determinant of a matrix.

green line

B. Curriculum: How does this topic extend what your students should have learned in previous courses?

 Students learn early in their mathematical careers how to calculate the area of simple polygons such as triangles and parallelograms. They learn by memorizing formulas and plugging given values into the formulas. Matrices, and more specifically the determinant of a matrix, can be used to do the same thing.

For example, consider a triangle with vertices (1,2), (3, -4), and (-2,3). The traditional method for finding the area of this circle would be to use the distance formula to find the length of each side and the height before plugging and chugging with the formula A = \frac{1}{2} bh. Matrices can be used to compute the same area in fewer steps using the fact that the area of a triangle the absolute value of one-half times the determinant of a matrix containing the vertices of the triangle as shown below.

First, put the vertices of the triangle into a matrix using the x-values as the first column and the corresponding y-values as the second column. Then fill the third column with 1’s as shown:

caitlin1

Next, compute the determinant of the matrix and multiply it by ½ (because the traditional area formula for a triangle calls for multiplying by ½ to account for the fact that a triangle is half of a rectangle, it is necessary to keep the ½ here also) as shown:

caitlin2Obviously, the area of a triangle cannot be negative. Therefore it is necessary to take the absolute value of the final answer. In this case |-8| = 8, making the area positive eight instead of negative eight.

The same idea can be applied to extend students knowledge of the area of other polygons such as a parallelogram, rectangle, or square. Determinants of matrices are a great extension of the basic mathematical concept of area that students will have learned in previous courses.

green line

D. History: What are the contributions of various cultures to this topic?

The history of matrices can be traced to four different cultures. First, Babylonians as early as 300 BC began attempting to solve simultaneous linear equations like the following:

There are two fields whose total area is eighteen hundred square yards. One produces grain at the rate of two-thirds of a bushel per square yard while the other produces grain at the rate of on-half a bushel per square yard. If the total yield is eleven hundred bushels, what is the size of each field?

While the Babylonians at this time did not actually set up matrices or calculate any determinants, they laid the framework for later cultures to do so by creating systems of linear equations.

The Chinese, between 200 BC and 100 BC, worked with similar systems and began to solve them using columns of numbers that resemble matrices. One such problem that they worked with is given below:

There are three types of corn, of which three bundles of the first, two of the second, and one of the third make 39 measures. Two of the first, three of the second and one of the third make 34 measures. And one of the first, two of the second and three of the third make 26 measures. How many measures of corn are contained of one bundle of each type?

Unlike the Babylonians, the Chinese answered this question using their version of matrices, called a counting board. The counting board functions the same way as modern matrices but is turned on its side. Modern matrices write a single equation in a row and the next equation in the next row and so forth. Chinese counting boards write the equations in columns. The counting board below corresponds to the question above:

1   2   3

2   3   2

3   1   1

26  34  39

They then used what we know as Gaussian elimination and back substitution to solve the system by performing operations on the columns until all but the bottom row contains only zeros and ones. Gaussian elimination with back substitution did not become a well known method until the early 19th century, however.

Next, in 1683, the Japanese and Europeans simultaneously saw the discovery and use of a determinant, though the Japanese published it first. Seki, in Japan, wrote Method of Solving the Dissimulated Problems which contains tables written in the same manner as the Chinese counting board. Without having a word to correspond to his calculations, Seki calculated the determinant and introduced a general method for calculating it based on examples. Using his methods, Seki was able to find the determinants of 2×2, 3×3, 4×4, and 5×5 matrices.

In the same year in Europe, Leibniz wrote that the system of equations below:

10+11x+12y=0

20+21x+22y=0

30+31x+32y=0

has a solution because

(10 \times 21 \times 32)+(11 \times 22 \times 30)+(12 \times 20 \times 31)=(10 \times 22 \times 31)+(11 \times 20 \times 32)+(12 \times 21 \times 30).

This is the exact condition under which the matrix representing the system has a determinant of zero. Leibniz was the first to apply the determinant to finding a solution to a linear system. Later, other European mathematicians such as Cramer, Bezout, Vandermond, and Maclaurin, refined the use of determinants and published rules for how and when to use them.

Source: http://www-history.mcs.st-and.ac.uk/HistTopics/Matrices_and_determinants.html

green line

B. Curriculum: How can this topic be used in you students’ future courses in mathematics or science?

Calculating the determinant is used in many lessons in future mathematics courses, mainly in algebra II and pre-calculus. The determinant is the basis for Cramer’s rule that allows a student to solve a system of linear equations. This leads to other methods of solving linear systems using matrices such as Gaussian elimination and back substitution.  It can also be used in determining the invertibility of matrices.  A matrix whose determinant is zero does not have an inverse. Invertibility of matrices determines what other properties of matrix theory a given matrix will follow. If students were to continue pursuing math after high school, understanding determinants is essential to linear algebra.

That Makes It Invertible!

There are several ways of determining whether an n \times n matrix {\bf A} has an inverse:

  1. \det {\bf A} \ne 0
  2. The span of the row vectors is \mathbb{R}^n
  3. Every matrix equation {\bf Ax} = {\bf b} has a unique solution
  4. The row vectors are linearly independent
  5. When applying Gaussian elimination, {\bf A} reduces to the identity matrix {\bf I}
  6. The only solution of {\bf Ax} = {\bf 0} is the trivial solution {\bf x} = {\bf 0}
  7. {\bf A} has only nonzero eigenvalues
  8. The rank of {\bf A} is equal to n

Of course, it’s far more fun to remember these facts in verse (pun intended). From the YouTube description, here’s a Linear Algebra parody of One Direction’s “What Makes You Beautiful”. Performed 3/8/13 in the final lecture of Math 40: Linear Algebra at Harvey Mudd College, by “The Three Directions.”

While I’m on the topic, here’s a brilliant One Direction mashup featuring the cast of Downton Abbey. Two giants of British entertainment have finally joined forces.