The Incomplete Gamma and Confluent Hypergeometric Functions (Part 4)

In the previous post, I show that the curious integral

\displaystyle \int_0^z t^{a-1} e^{-t} \, dt = \displaystyle e^{-z} \sum_{s=0}^\infty \frac{(a-1)!}{(a+s)!} z^{a+s},

where the right-hand side is a special case of the confluent hypergeometric function when a is a positive integer, can be confirmed if I can show that

\displaystyle \sum_{s=0}^n \frac{(-1)^s (a-1)!}{s! (a+n-s)!} =^? \frac{(-1)^n}{n! (a+n)}.

I’m using the symbol =^? to emphasize that I haven’t proven that this equality is true. To be honest, I didn’t immediately believe that this worked; however, I was psychologically convinced after using Mathematica to compute this sum for about a dozen values of n and a.

To attempt a proof, we first note that if n=0, then

\displaystyle \sum_{s=0}^0 \frac{(-1)^s (a-1)!}{s! (a+0-s)!} = (-1)^0 \frac{(a-1)!}{0!a!} = \frac{(-1)^0}{0! (a+0)},

and so the equality works if n=0. So, for the following, we will assume that n \ge 1. I tried replacing n with n-a in the above equation to hopefully simplify the summation a little bit:

\displaystyle \sum_{s=0}^{n-a} \frac{(-1)^s (a-1)!}{s! (a+n-a-s)!} =^? \frac{(-1)^{n-a}}{(n-a)! (a+n-a)}

\displaystyle \sum_{s=0}^{n-a} \frac{(-1)^s (a-1)!}{s! (n-s)!} =^? \frac{(-1)^{n-a}}{n \cdot (n-a)!}

\displaystyle \sum_{s=0}^{n-a} \frac{(-1)^s}{s! (n-s)!} =^? \frac{(-1)^{n-a}}{n \cdot (a-1)!(n-a)!}

The left-hand side looks like a binomial coefficient, which suggest multiplying both sides by n!:

\displaystyle \sum_{s=0}^{n-a} (-1)^s \frac{n!}{s! (n-s)!} =^? \frac{(-1)^{n-a} n!}{n \cdot (a-1)!(n-a)!}

\displaystyle \sum_{s=0}^{n-a} (-1)^s \binom{n}{s} =^? \frac{(-1)^{n-a} (n-1)!}{(a-1)!(n-a)!}

Surprise, surprise: the right-hand side is also a binomial coefficient since (a-1)+(n-a) = n-1:

\displaystyle \sum_{s=0}^{n-a} (-1)^s \binom{n}{s} =^? (-1)^{n-a} \binom{n-1}{n-a}.

Now we’re getting somewhere. To again make a sum a little simpler, let’s replace a with n-a:

\displaystyle \sum_{s=0}^{n-(n-a)} (-1)^s \binom{n}{s} =^? (-1)^{n-(n-a)} \binom{n-1}{n-(n-a)}

\displaystyle \sum_{s=0}^a (-1)^s \binom{n}{s} =^? (-1)^a \binom{n-1}{a}

Therefore, it appears that the confirming the complicated integral at the top of this post reduces to this equality involving binomial coefficients. In the next post, I’ll directly confirm this equality.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.