Solving Problems Submitted to MAA Journals (Part 7i)

The following problem appeared in Volume 131, Issue 9 (2024) of The American Mathematical Monthly.

Let X and Y be independent normally distributed random variables, each with its own mean and variance. Show that the variance of X conditioned on the event X>Y is smaller than the variance of X alone.

In previous posts, we reduced the problem to showing that if f(x) = 1 + \sqrt{2\pi} x e^{x^2/2} \Phi(x), then f(x) is always positive, where

\Phi(z) = \displaystyle \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-z^2/2} \, dz

is the cumulative distribution function of the standard normal distribution. If we can prove this, then the original problem will be true.

Motivated by the graph of f(x), I thought of a two-step method for showing f must be positive: show that f is an increasing function, and show that \displaystyle \lim_{x \to -\infty} f(x) = 0. If I could prove both of these claims, then that would prove that f must always be positive.

I was able to show the second step by demonstrating that, if x<0,

\displaystyle f(x) = |x| e^{x^2/2} \int_{-\infty}^x \frac{1}{t^2} e^{-t^2/2} \, dt.

As discussed in the last post, the limit \displaystyle \lim_{x \to -\infty} f(x) = 0 follows from this equality. However, I just couldn’t figure out the first step.

So I kept trying.

And trying.

And trying.

Until it finally hit me: I’m working too hard! The goal is to show that f(x) is positive. Clearly, clearly, the right-hand side of the last equation is positive! So that’s the entire proof for x<0… there was no need to prove that f is increasing!

For x \ge 0, it’s even easier. If x is non-negative, then

f(x) = 1 + \sqrt{2\pi} x e^{x^2/2} \Phi(x) \ge 1 + \sqrt{2\pi} \cdot 0 \cdot 1 \cdot \frac{1}{2} = 1 > 0.

So, in either case, f(x) must be positive. Following the logical thread in the previous posts, this demonstrates that \hbox{Var}(Z_1 \mid Z_1 > a+bZ_2) < 1, so that \hbox{Var}(X \mid X <Y) < \hbox{Var}(X), thus concluding the solution.

And I was really annoyed at myself that I stumbled over the last step for so long, when the solution was literally right in front of me.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.