Solving Problems Submitted to MAA Journals (Part 7g)

The following problem appeared in Volume 131, Issue 9 (2024) of The American Mathematical Monthly.

Let X and Y be independent normally distributed random variables, each with its own mean and variance. Show that the variance of X conditioned on the event X>Y is smaller than the variance of X alone.

We suppose that E(X) = \mu_1, \hbox{SD}(X) = \sigma_1, E(Y) = \mu_2, and \hbox{SD}(Y) = \sigma_2. With these definitions, we may write X = \mu_1 + \sigma_1 Z_1 and Y = \mu_2 + \sigma_2 Z_2, where Z_1 and Z_2 are independent standard normal random variables.

The goal is to show that \hbox{Var}(X \mid X > Y) < \hbox{Var}(X). In previous posts, we showed that it will be sufficient to show that \hbox{Var}(Z_1 \mid Z_1 > a + bZ_2) < 1, where a = (\mu_2 - \mu_1)/\sigma_1 and b = \sigma_2/\sigma_1. We also showed that P(Z_1 > a + bZ_2) = \Phi(c), where c = -a/\sqrt{b^2+1} and

\Phi(z) = \displaystyle \frac{1}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-z^2/2} \, dz

is the cumulative distribution function of the standard normal distribution.

To compute

\hbox{Var}(Z_1 \mid Z_1 > a + bZ_2) = E(Z_1^2 \mid Z_1 + a bZ_2) - [E(Z_1 \mid Z_1 > a + bZ_2)]^2,

we showed in the two previous posts that

E(Z_1 \mid Z_1 > a + bZ_2) = \displaystyle \frac{e^{-c^2/2}}{\sqrt{2\pi}\sqrt{b^2+1} \Phi(c)}

and

E(Z_1^2 mid Z_1 > a + bZ_2) = 1 -\displaystyle \frac{c e^{-c^2/2}}{ \sqrt{2\pi} (b^2+1) \Phi(c)}.

Therefore,

\hbox{Var}(Z_1 \mid A) = 1 -  \displaystyle\frac{c e^{-c^2/2}}{ \sqrt{2\pi} (b^2+1) \Phi(c)} - \left( \frac{e^{-c^2/2}}{\sqrt{2\pi (b^2+1)} \Phi(c)} \right)^2

= 1 -  \displaystyle\frac{c e^{-c^2/2}}{ \sqrt{2\pi} (b^2+1) \Phi(c)} - \frac{e^{-c^2}}{2\pi (b^2+1) [\Phi(c)]^2}

= 1 -  \displaystyle\frac{c}{ \sqrt{2\pi} (b^2+1) \Phi(c) e^{c^2/2}} - \frac{1}{2\pi (b^2+1) [\Phi(c)]^2e^{c^2}}

= 1 -  \displaystyle\frac{\sqrt{2\pi} c e^{c^2/2} \Phi(c) + 1}{2\pi (b^2+1) [\Phi(c)]^2 e^{c^2}}.

To show that \hbox{Var}(Z_1 \mid A) < 1, it suffices to show that the second term must be positive. Furthermore, since the denominator of the second term is positive, it suffices to show that f(c) = 1 + \sqrt{2\pi} c e^{c^2/2} \Phi(c) must also be positive.

And, to be honest, I was stuck here for the longest time.

At some point, I decided to plot this function in Mathematica to see if I get some ideas flowing:

The function certainly looks like it’s always positive. What’s more, the graph suggests attempting to prove a couple of things: f is an increasing function, and \displaystyle \lim_{x \to -\infty} f(x) = 0. If I could prove both of these claims, then that would prove that f must always be positive.

Spoiler alert: this was almost a dead-end approach to the problem. I managed to prove one of them, but not the other. (I don’t doubt it’s true, but I didn’t find a proof.) I’ll discuss in the next post.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.