Solving Problems Submitted to MAA Journals (Part 6e)

The following problem appeared in Volume 97, Issue 3 (2024) of Mathematics Magazine.

Two points P and Q are chosen at random (uniformly) from the interior of a unit circle. What is the probability that the circle whose diameter is segment overline{PQ} lies entirely in the interior of the unit circle?

Let D_r be the interior of the circle centered at the origin O with radius r. Also, let C(P,Q) denote the circle with diameter \overline{PQ}, and let R = OP be the distance of P from the origin.

In the previous post, we showed that

\hbox{Pr}(C(P,Q) \subset D_1 \mid R = r) = \sqrt{1-r^2}.

To find \hbox{Pr}(C(P,Q) \subset D_1), I will integrate over this conditional probability:

\hbox{Pr}(C(P,Q) \subset D_1) = \displaystyle \int_0^1 \hbox{Pr}(C(P,Q) \subset D_1 \mid R = r) F'(r) \, dr,

where F(r) is the cumulative distribution function of R. For 0 \le r \le 1,

F(r) = \hbox{Pr}(R \le r) = \hbox{Pr}(P \in D_r) = \displaystyle \frac{\hbox{area}(D_r)}{\hbox{area}(D_1)} = \frac{\pi r^2}{\pi} = r^2.

Therefore,

\hbox{Pr}(C(P,Q) \subset D_1) = \displaystyle \int_0^1 \hbox{Pr}(C(P,Q) \subset D_1 \mid R = r) F'(r) \, dr

= \displaystyle \int_0^1 2 r \sqrt{1-r^2} \, dr.

To calculate this integral, I’ll use the trigonometric substitution u = 1-r^2. Then the endpoints r=0 and r=1 become u = \sqrt{1-0^2} = 1 and u = \sqrt{1-1^2} = 0. Also, du = -2r \, dr. Therefore,

\hbox{Pr}(C(P,Q) \subset D_1) = \displaystyle \int_0^1 2 r \sqrt{1-r^2} \, dr

= \displaystyle \int_1^0 -\sqrt{u} \, du

= \displaystyle \int_0^1 \sqrt{u} \, du

= \displaystyle \frac{2}{3} \left[  u^{3/2} \right]_0^1

=\displaystyle  \frac{2}{3}\left[ (1)^{3/2} - (0)^{3/2} \right]

= \displaystyle \frac{2}{3},

confirming the answer I had guessed from simulations.

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.