Confirming Einstein’s Theory of General Relativity With Calculus, Part 6h: Rationale for Method of Undetermined Coefficients V

In this series, I’m discussing how ideas from calculus and precalculus (with a touch of differential equations) can predict the precession in Mercury’s orbit and thus confirm Einstein’s theory of general relativity. The origins of this series came from a class project that I assigned to my Differential Equations students maybe 20 years ago.

We have shown that the motion of a planet around the Sun, expressed in polar coordinates (r,\theta) with the Sun at the origin, under general relativity follows the initial-value problem

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2},

u(0) = \displaystyle \frac{1}{P},

u'(0) = 0,

where u = \displaystyle \frac{1}{r}, \displaystyle \frac{1}{\alpha} = \frac{GMm^2}{\ell^2}, \delta = \displaystyle \frac{3GM}{c^2}, G is the gravitational constant of the universe, m is the mass of the planet, M is the mass of the Sun, \ell is the constant angular momentum of the planet, c is the speed of light, and P is the smallest distance of the planet from the Sun during its orbit (i.e., at perihelion).

In the two previous posts, we derived the method of undetermined coefficients for the simplified differential equations

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2}.

and

u''(\theta) + u(\theta) = \displaystyle \frac{2\delta \epsilon \cos \theta}{\alpha^2}.

In this post, we consider the simplified differential equation if the right-hand side has only the fifth term,

u''(\theta) + u(\theta) =  \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}.

Let v(\theta) = \displaystyle \frac{\delta \epsilon^2 }{2\alpha^2} \cos 2\theta. Then v satisfies the new differential equation v'' + 4v = 0. Also, v = u'' + u. Substituting, we find

(u''+u)'' + 4(u''+u) = 0

u^{(4)} + u'' + 4u'' + 4u = 0

u^{(4)} + 5u'' + 4u = 0

The characteristic equation of this new differential equation is

r^4 + 5r^2 + 4 = 0

(r^2 + 1)(r^2 + 4) = 0

r^2 + 1 = 0 \qquad \hbox{or} \qquad r^2 + 4 = 0

r = \pm i \qquad \hbox{or} \qquad r = \pm 2i

Therefore, the general solution of the new differential equation is

u(\theta) = c_1 \cos \theta + c_2 \sin \theta + c_3 \cos 2\theta + c_4 \sin 2\theta.

The constants c_3 and c_4 can be found by substituting back into the original differential equation:

u''(\theta) + u(\theta) =  \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

-c_1 \cos \theta - c_2 \sin \theta - 4c_3 \cos 2\theta - 4c_4 \sin 2\theta + c_1 \cos \theta + c_2 \sin \theta + c_3 \cos 2\theta + c_4 \sin 2\theta = \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

- 3c_3 \cos 2\theta - 3c_4 \sin 2\theta  = \displaystyle \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}

Matching coefficients, we see that c_3 = \displaystyle -\frac{\delta \epsilon^2}{6\alpha^2} and c_4 = 0. Therefore, the solution of the simplified differential equation is

u(\theta) = c_1 \theta + c_2 \theta \displaystyle -\frac{\delta \epsilon^2}{6\alpha^2} \cos 2\theta.

In particular, setting c_1 = 0 and c_2 = 0, we see that

u(\theta) =  \displaystyle -\frac{\delta \epsilon^2}{6\alpha^2} \cos 2\theta

is a particular solution to the simplified differential equation.

In the next post, we put together the solutions of these three simplified differential equations to solve the original differential equation,

u''(\theta) + u(\theta) = \displaystyle \frac{1}{\alpha} + \frac{\delta}{\alpha^2} + \frac{\delta \epsilon^2}{2\alpha^2} + \frac{2\delta \epsilon \cos \theta}{\alpha^2} + \frac{\delta \epsilon^2 \cos 2\theta}{2\alpha^2}.

One thought on “Confirming Einstein’s Theory of General Relativity With Calculus, Part 6h: Rationale for Method of Undetermined Coefficients V

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.