In my capstone class for future secondary math teachers, I ask my students to come up with ideas for engaging their students with different topics in the secondary mathematics curriculum. In other words, the point of the assignment was not to devise a full-blown lesson plan on this topic. Instead, I asked my students to think about three different ways of getting their students interested in the topic in the first place.
I plan to share some of the best of these ideas on this blog (after asking my students’ permission, of course).
This student submission comes from my former student Haley Higginbotham. Her topic, from Precalculus: computing a dot product.
A1. What interesting (i.e., uncontrived) word problems using this topic can your students do now?
For the dot product of vectors, there are lots of word problems regarding physics that you could do that students would find more interesting than word problems self-contained in math. For example, you could say that “you are trying to hit your teacher with a water balloon. Your first try had a certain velocity and distance in front of the teacher, and your second try had a certain velocity and distance behind the teacher. In order to hit the teacher, you will need half the angle between the vectors to hit the teacher. Figure out what angle and velocity you would need to hit the teacher with a water balloon.” This could also turn into an activity, where the students get to test their guesses to see if they can get close enough. There would be need to be something they could use to accurately catapult their water balloon, but that’s a different problem entirely.
B1. How can this topic be used in your students’ future courses in mathematics or science?
The dot product (and vectors in general) can be seen in physics, calculus 3, linear algebra, vector calculus, numerical analysis, and a bunch of other upper level math and science courses. Of course, not all students are going to be taking upper level math and science courses. However, out of the students going into STEM majors, they most assuredly will see the dot product and by seeing how vectors work earlier in their math careers, they will be more comfortable manipulating something they have already seen before. Also, the dot product and vectors are very useful as a tool to use in upper levels of math and in many different applications of engineering and computer science. In the game design, the dot product can be used to help engineer objects movements in the game work more realistically as a single unit and in relation to other objects.
E1. How can technology be used?
Geogebra is a great site to use since it has a tool https://www.geogebra.org/m/PGHaDjmD that will visually show you how the dot product works. It’s awesome because you get multiple different representations side by side, so that students who understand at different levels can all get something from this visual, interactive program. They can see how changing the position of the vectors changes the dot product and how it relates to the angle between the two vectors. Also, students will most likely be more engaged with this activity than just doing a bunch of examples with no real concept of how all of these pieces relate together which is not good in terms of promoting conceptual understanding. I think you could also use Desmos as an activity builder to make something similar to the above tool if students find the tool confusing to either use or look at.
References:
https://hackernoon.com/applications-of-the-vector-dot-product-for-game-programming-12443ac91f16