Parabolic Properties from Pieces of String

John Quintanilla
Department of Mathematics
University of North Texas

Denton, Texas 76203

Math Horizons, Vol. 29, No. 3, pp. 20-23 (February 2022)



IHluminating Illustration: Parabolic Properties from Pieces of String

Depending on the context, the word parabola could refer to either the graph of a
quadratic polynomial or (figure 1) the set of all points which are the same distance from a given
point F (called the focus) and a given line (called the directrix and shown in red). To motivate
the study of parabolas in either context, textbooks often mention that parabolic reflectors can
direct sound and light in devices such as telescopes, satellite dishes, lighting fixtures, and

microphones. In figure 1, let L (for light) be an arbitrary point above R, and imagine a ray of
light traveling downward along LR , a line segment parallel to the parabola’s axis of symmetry

and perpendicular to the directrix. After hitting the parabola at R, the light reflects as if the blue
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Figure 1. A point R on a parabola satisfies RF = RD, where F is the focus and D is the nearest
point to R on the directrix. Also, the reflective property of parabolas states that a beam of light

that is perpendicular to the directrix will reflect at any point R to the focus F.



tangent line at R was a mirror. The reflective property of parabolas states that, no matter where
the incoming ray of light hits the parabola, the reflected light passes through the focus F.

The usual proof of the reflective property begins with the focus-directrix definition of a
parabola. Suppose that F has coordinates (h, k + p), the directrix has equationy =k —p, and D is

the point on the directrix closest to R. Using RF = RD and the distance formula, we obtain

Vx—h2+ @ -k-p?=y-k+p,
which simplifies to the standard form (x — h)? = 4p(y — k) of a parabola. To prove the reflective
property, one can find dy/dx (and thus the slope of the blue tangent line) and show that the angles
£JRL and £KRF are congruent.

In this article, we present a different proof of the reflective property that does not require
calculus. We reverse the usual logic and show that the graph of a quadratic polynomial has a
focus and directrix, and the reflective property will be a natural corollary of this geometric
argument. Along the way, we will also find the tangent line of a parabola without using calculus.

We begin our explorations with a third way of creating parabolas: string art.

String art
When I was a child, I enjoyed playing with string art, which can be created by drawing
line segments, which we will call strings, with endpoints chosen from equally spaced points
along two given line segments. Figure 2 shows string art from the line segments that connect
B(8, 0) to A(0, 8) and to C(16, 8). Seven strings are also shown, connecting (1, 7) to (9, 1), (2, 6)
to (10, 2), and so on. Evidently, the strings trace some kind of curve.
Most mathematical studies of string art (formally called envelopes) rely on differential

equations. However, since string art is simple enough for a young child to construct, we will



instead find the apparent curve in figure 2 using simpler mathematical tools. The colored points
indicate the points on the strings with the largest y-coordinate at x =2, 4, 6, ..., 14. For example,
the dashed vertical line x = 4 intersects the red, brown, orange, and green strings; of these, the
brown string has the highest point of intersection. The brown string connecting (2, 6) and (10, 2)
has equation y = -0.5x + 7, and so the y-coordinate of the brown point isy =-0.5(4) + 7 = 5.
Assuming the string art curve is the graph of a quadratic polynomial, it would make sense
that the graph passes through A(0, 8), C(16, 8), and the (presumed) vertex V(8, 4). The reader is
invited to show that quadratic polynomial whose graph contains A, C,and Visy =x? /16 —x + 8

and, furthermore, that the graph indeed passes through all of colored points in figure 2.
To formalize this heuristic argument, consider line segments 'AB and BC with

endpoints A(0, t), B(t, 0), and C(2t, t), with t > 0 (figure 3). Also shown in red is “string S,” where
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Figure 2. An example of string art. The colored points indicate which string has the largest y-
coordinate at x=2, 4, 6, ..., 14. Direct calculations confirm that these points also lie on the graph

ofy=x%/16 —x + 8.



s is the x-coordinate of the string’s left endpoint P. The reader is invited to use the endpoints P(s,
t—s) and Q(s + t, s) to show that string s has equationy = (2s / t — 1)x + t — 2s? / t. For example,
if s=2and t =28, we obtain y = -0.5x + 7, which was the equation of the brown string in figure 2.
To find the string art curve, we now find the string s that maximizesy = (2s/t—-1)x +t —
2s? | t, where x and t are fixed. We invite the reader to solve dy/ds = 0 (or, for a calculus-free
proof, to find the vertex of this quadratic polynomial in s) and show that the optimal value of s is
x / 2. Substituting back into the equation for y gives the value of this maximal y-coordinate:
y=Q(x/2)/t—1x+t—2(x/2)*/t=x>/(2t) —x + 1.
Summarizing, we have shown that the string art curve is the graph of a quadratic polynomial.

(We can recover the quadratic polynomial for figure 2 by setting t equal to 8.)
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Figure 3. The coordinates of R on PQ , denoted as “string s,” are (X, (2s/t—1)x +t—2s%/1),

where X, s, and t are the x-coordinates of R, P, and B, respectively. For a fixed value of x, the y-

coordinate of R has a maximum value of x? / (2t) —x + t whens = x/ 2.



Although figure 3 depicts the case 0 < s < t (that is, P is between A and B and Q is
between B and C), the above derivation applies even if s <0 or s > t. Therefore, the graph of this
quadratic polynomial will continue to be traced if strings connecting equally-spaced points past
the endpoints A and C are drawn and extended, as shown in figure 4.

Interestingly, since s = x / 2 is a one-to-one function, we have shown that string s = x/ 2
is the only string that passes through a given point (x, y) on the graph of this quadratic
polynomial. In other words, we have shown that string s is tangent to the curve at x = 2s. We

invite the reader to use calculus to find the tangent line of y = x? / (2t) — x + t at x = 2s and

confirm that the points P(s, t —s) and Q(s + t, s) both lie on this tangent line.

Figure 4. Extended string art traces the full graph of the quadratic polynomial.



Focus-directrix property

Our study of string art has put us in position to show that the graph of y = x?/ (2t) —x + t
has a focus and directrix. Figure 5(a) shows this graph and the line segments 'AB and BC.An

arbitrary point R on the graph, with x-coordinate 2s, is also shown. (Although figure 5(a) depicts
R as between A and C, the argument that follows still works if R is either to the left of A or to the

right of C.) As discussed earlier, string s, with endpoints P(s, t —s) and Q(s + t, s), is tangent to
the graph at R. Figure 5(a) also shows PF and FQ , where F(t, t) is the midpoint of AC . (The
reader may guess why F was chosen as the name of this point.) Since right triangles APXF and
AFYQ are congruent by the SAS postulate, angles ZPFX and £QFY are complementary.
Therefore, PF and FQ are both congruent and perpendicular.

Define the point D so that quadrilateral DPFQ is a square, as shown in figure 5(b). (The
reader may also guess why D was chosen as the name of this point.) A quick calculation shows
that the coordinates of D are (2s, 0), and so D lies on the x-axis directly below R for any value of

s. In other words, RD is the distance from R to the x-axis.

Figure 5(b) also shows triangles ADRM and AFRM, where M is the intersection of P_Q

and DF . Since the diagonals of a square are perpendicular bisectors of each other, we see that
DM = FM and that zZFMR and 2DMR are right angles. Furthermore, triangles ADRM and AFRM
are congruent by the SAS postulate, and so corresponding line segments RD and RF are

congruent. We conclude that, for any point R on the graph of y = x? / (2t) — x + t, the distance
from R to F (the focus of the parabola) equals the distance from R to the x-axis (the directrix).
We invite the reader to reverse this geometric argument and confirm with conic sections

that the parabola with focus (t, t) and directrix y = 0 has equation y = x? / (2t) — x + t.
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Figure 5. (a) Connecting the midpoint F of 'AC to the endpoints of any string s forms congruent

and perpendicular line segments PF and F_Q (b) Square DPFQ and the congruence of right

triangles ADRM and AFRM prove that the graph of a quadratic polynomial is satisfies the conic-
section definition of a parabola with focus F and directrix the x-axis. The figure also shows that

£LRP and 2FRM are congruent, thus proving the reflective property of parabolas.



Reflective property

The reflective property of parabolas follows immediately from figure 5(b). Vertical line
segment DL intersects PQ at R, so that ZLRP and MRD are vertical angles. Also, ZMRD and

£FRM are the corresponding parts of congruent triangles. Therefore, ZLRP and 2FRM are
congruent, proving the reflective property for the parabola y = x? / (2t) — x + t. Furthermore, since
t is an arbitrary positive number, rotations and translations (figure 6) can be used to prove the

reflective property for all parabolas, whether opening upward, downward, or at an angle.
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Figure 6. Any parabola (black) may be transformed into the graph (brown) of y = x? / (2t) — x + t

by applying a rotation and/or translation, thus proving the reflective property for all parabolas.
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